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ABSTRACT

We study the asymptotic behavior of the solutions of the scalar Volterra

integrodifferential equation

(E) x'(t) + (a * g(x))(t) = f(t), t ) 0 , x(O) = x0

+
where a,f : R + R and g:R + R are given functions, * denotes

convolution and x : R + R is the solution. We are in particular interested

in the largely unsolved case when a 4 L1 (R+ ) and f vanishes at infinity

but does not belong to any LP (R+ ) space for p < 0 . The report examines

both the linear (g(x) E x) and the nonlinear (g(x) * x) version of (E)
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SIGNIFICANCE AND EXPLANATION

In the construction of mathematical models of technical and physical

systems one frequently ends up with equations in which the current rate of
dx(t))

change ( = ) of the state of the system ( = x(t)) is a function not

only of x(t) but also of x(T) for past times T < t . Specifically, one

obtains Volterra integrodifferential equations, exemplified by

(E) + ft a(t-s)g(x(s))ds = f(t) , x(0) = x0 , t ) 0
0

Here f(t) is the external input, a(t) is the feedback kernel, g(x) is an

in general nonlinear function of x and x(t) is the state of the system at

time t

The key problem concerning (E) is the behavior of x(t) for large

values of t . In particular one is interested in whether x(t) tends to

zero when t + - or whether the system keeps oscillating. The present report

analyzes these questions. We are in particular interested in the case when

the feedback kernel is large, that is when a(t) is not integrable over the

positive half-axis. Examples of such kernels often occur in applications

where one encounters kernels behaving roughly as ta , for some 0 < a < ,

for large t•

The second key aspect of this report is that we do allow large input

functions f(t). we only assume f(t) + 0 , as t + - but do not take

IftP to be integrable over the positive half-axis for any p <

Our main result (Theorem 1) concerns the nonlinear version of (E). We

give conditions under which bounded solutions of (E) decay to zero as

t + * We also give a result on the linear version of (E).

The responsibility for the wording and views expressed in this descriptive
summary lies with MRC, and not with the author of this report.
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ASYMPTOTIC PROPERTIES OF VOLTERRA EQUATIONS WITH NONINTEGRABLE KERNELS

Stig-Olof Londen

INTRODUCTION

In this report we examine the asymptotic behavior of the solutions of the

scalar Volterra equation

(1.1) x'(t) + (a * g(x))(t) = f(t) , t ) 0 , x(0) = x0

where a,g,f are given functions, x is the solution and where * denotes

convolution. Our first result (Theorem 1 ) concerns the nonlinear case with

both a and f big; thus a L (R+ ) and f satisfying only (1.7) are not

excluded. In Theorem 2 we examine the linear version of (1.1) under the same

.size conditions.

We begin by stating

Theorem 1. Assume

(1.2) g C C(R)

(1.3) a e BV(R) , a() = 0

(1.4) Re a ) 0 , e £ R , w * 0

with a(w) 0 if w e Z dZ f wiRe a(w) = 0 , 01 ol,

(1.5) Z is countable.

Suppose the differential resolvent r a(t) of a(t) satifies

(i) r e LI(Ra

(1.6) (ii) ra e L (R+ )

(iii) tr" C L (R+ )

a

and let f be such that

Sponsored by the United States Army under Contract No. DAAG29-80-C-0041.



f e L (R + ) , lir f(t) 0( 1 .7 ) t 0

Finally let

(1.8) x e (L n LAC)(R + ) be a solution of (1.1) a.e. on R+

Then

(1.9) lir g(x(t)) = 0
t+00

Above a(w) df f eita(t)dt. By (1.3) a is well defined for
0

W e R, w * 0 . The differential resolvent ra(t) is defined as the

solution of

(1.10) r'(t) + (r * a)(t) = 0 , r (0) = 1
a a a

The question naturally arises whether there exist kernels a L (R+ )

and of positive type (i.e. satisfying (1.4)) such that (1.6) holds. By a

well-known result [7) the conditions iw + a(W) * 0 , W E R , and

(1.11) a(t) positive, nonincreasing and convex on R+ ,

imply (1.6i). But under the same conditions one does in fact have (1.6ii) and

if moreover -a'(t) is convex then (1.6iii) is true. The two last statements

are contained in Lemma 1 below which is proved in Section 3.

Lemma 1. Let a(t) be nonnegative, nonincreasing and convex on R+

with a(0) < , a(-) = 0 , and assume that for every fixed T > 0 one has

that a(t) is not linear in all the intervals [nT, (n+1)T] ; n =

0,1,." . Then (1.4) with Z empty and (1.6i,ii) hold. If in

addition -a'(t) is convex then (1.6iii) is true.

Apart from being applicable to equations with kernels a 4 L1 (R+ ) the

above theorem also extends recent work [5), [9) done for equations having

kernels a L I(R+ ) and a nonhomogeneous term f satisfying only (1.7). To

see this we formulate Lemma 2 which follows upon an examination of the proof
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of Theorem 1, and the fact that a C L CR) together with (1.4) and 0 Z

implies r ,r' C L (R+)
a'a

Lemma 2. Let (1.2), (1.4), (1.5), (1.6iii), (1.7) and (1.8) hold. In

addition assume a L I(R+ ) , and 0 4 Z . Then (1.9) .s true.

Both (51 and (9] work with more general forms of the convolution term

than (1.1). However, in addition to the condition (corresponding to)

1 +
a C L (R ) the results of [9] do require a moment condition on the kernel to

be satisfied and the results of [5] require g to be locally Lipschitzian.

At the price of (1.6iii) all this has been removed.

The proof of Theorem I is essentially based on (1.4), on the size

conditions (1.6), and on an asymptotic result obtained in [9]. Observe that

the countability assumption (1.5) can be dropped (without the addition of any

other hypothesis) if one applies the technique of (4) to the integrated

version of (1.1). As this has not been explicitly done we prefer to use (9,

Theorem 1b].

One of the main problems concerning the linear equation

(1.12) x'(t) + (a * x)(t) f(t) , t > 0, x(0) = X0

is the formulation of hypotheses on the kernel a(t) which imply

r C L (R+ ) . The most frequently used approach to this hard problem is toa

give conditions on a(t) which imply that r () is sufficiently smooth.
a

But one also has (provided one at first demonstrates that in case f has

compact support then x E L(R +)) that r £ L (R+ ) follows if the
a

implication (1.13) is true [8]

x C L(R + ) satisfies (1.12)(1.13)I implies (lim x(t) =0
with f satisfying (1.7) ti t 0

-3-
* .. * .



We show below thiat under reasonable conditions on the size of the derivatives

of the kernel a(t) one may weaken (1.13) to

fx e L O(R ) satisfies (1.12)

(11)with f satisfying (1.7) implies {lim x(t) 01

and lrn x1(t) -0J
t+m*

without altering the conclusion, namely that r C L (R +) holds if thea

implication (1.14) is true.

A recent article by Gripenberg (2] analyzes the integral resolvent

Ra(t) of a(t) by a related approach but under different hypotheses.

Theorem 2. Let a(t) C C [0,-) ,with a () 0 satisfy

(1.15) a' CL (R+)

(1.16) a' C BV(R)

(1.17) 1f. tjda'(t)I <
R

Z Z+a(z)*0, Re Z >0 Z 0

(1.18)

lim inf IZ + a(Z)I > 0

IZI+01 +

and sppos (1.14) holds. Then r aC L (R)
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- -I 2. PROOF OF THEOREM 1

Convolve (1.1) with ra and use the fact that ra satisfies (1.10).

This gives

(2.1) (r * x')(t) - (r' * g(x))(t) - (r * f)(t)
a a a

An integration of the first term on the left side of (2.1) by parts results in

(2.2) x(t) - (rW h(x))(t) -F(t)a

where h(x), x e R ;F(t), t e R ; are defined by

(2.3) h(x) = g(x) - x , F(t) = (r a * f)(t) + ra(t)xO

From (1.61,11), (1.7) and (1.10) follows

(2.4) F E (L7 n LAC) (R +, lrn F(t) =0

m +C

(2.5) F' I£ LO (R + , i POWF~t - 0

Thus

(2.6) lrn f (r)d-T - -F(0) =-X

t+- 0

Differentiate (2.2). use the fact that r'(0) - 0 and define b(t)

aa

-r"(t) *This 
gives

(2.7) x'(t) + (b *h(x))(t) - F'(t)

Then observe that c(t) deif ftb(s)ds - -r'(t) is such that
0

(2.8) c(-) - 0 , f+ c(t)dt - 1
R

From the fact that b C L 1(P + and from (1.10) we have

(2.9) b(w) - iwa(w)Eiw + a(w)] W * 0 b(0) =0

Note that by (1.4) the transform condition iw + ;(w) *0 is satisfied for

W 0 * A simple computation gives



(2.10) Re (W) W wRe(a(w))IiW + a(W)I 2

;)A2 2 w2 '2 -2
(2.11) Im b(w) = Ew(Re a +wIMa + W(Ima) ]Iiw + a(w)I , W 0

and so, by (1.4), (2.9)-(2.11),

Re b(W) > 0 , W E R ;Re b(W) =0iff W E Z U (0)

(2.12)

()=0 if Reb )0.

By (1.5), (1.6) - in particular we need (1.611i) -(1.8), (2.4), (2.5), (2.12)

and as h E C(R) we may apply [9, Theorem 1b] to get

(2.13) lim [x(t) + h(x(t)) f+ C(T)dT] 0
t+40 R

But if the first part of (2.3) and the second part of (2.8) are used in (2.13)

one gets (1.9).
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3. PROOF OF LEMMA 1

It is well-known that under the stated hypotheses (1.4) holds with Z

empty. See for example (10, p. 170], (3, p. 546]. From [7] we have that

(1.6i) holds.

To show that (1.6ii) is satisfied one may at first observe that by

(1.6i), (1.10), the monotonicity of a(t) and as a(0) < - one has

r' e L (R) . Thus we may Laplace transform r' for Re s > 0 and obtain
a a

r;'(s) = -a(s)[s + a(s)]- I  (Note that s + a(s) # 0 for Re s ) 0). Buta

by (1.3) Ia(s)I = O(IsI) as lel + - and so we conclude by an application

of [6, p. 368] that

2 +
(3.1) r' e L (R ) , r () = -a(w)[iw + a(w)] -

, W * 0
a a

1 +
To have r E L (R ) it suffices to show that r;(w) is locally absolutelya a

continuous on R and satisfies
d r1 IR

(3.2) r'(W) C L (R)
dwa

But (3.2) follows after straightforward computations which make use of the

monotonicity of a and the estimates in [7, Lemma 1].

To prove (1.6iii) one notes at first that the Laplace transform of

def 2da(s)
c(t) df t r"(t) is the analytic function c (s) d [s 7__ +

a -s

+ [a(s)]2 ] (s + a(s)] - 2
, Re s > 0 . We assert that

(3.3) sup f IZ(x + iy)12 dy < •
0 < x < R

To see this one observes that

(3.4) S2  (S---) = -sa(s) - L[ta"(t) - a' (t)}
ds

that la(s)I O(Isl1) and that by the monotonicity of a(t) one has ta",

a' e L (R+). Consequently

-7-



sup Is2 ds < * and so sup Ic(s)l <
Re s>0 Re s0

which together with the asymptotic estimate for a(s) gives (3.3). Thus

2 +
c C L (R ) and

[a(wf)2 + iW2 da

(3.5) C(W) = 2w W 0
[a(w) + iw]

2

+
To have c e L (R ) we need to verify that c is locally absolutely

continuous and satisfies

(3.6) dc(w) C L (R)dw

From [I, p. 972] we have (under the assumption that -a' is convex) that

a(w) is twice continuously differentiable and satisfies

2* 1/1I1t

(3.7) 2  Y, f 1/1W-  t 2 a(t)dt , * 0
d2 0

for some constant K . Estimating this upwards gives

da 12 Iw'- -2^
(3.8) I Kj- f a(t)dt 4 K IWI a(w)

d 2 0 1

where the second inequality follows from (7, Lemma 1]. Note that we also have

da(w) -

(3.9) I KIW-I W() I.

It now takes some computations which use (3.5), (3.8), (3.9) and the

asymptotic estimates

d(k)a(

I O(IWIa-k , 4 , k = 0,1,2,
d k

to arrive at (3.6).

---



4. PROOF OF THEOREM 2.

Let r(x) denote the positive limit set of x , i.e.

r(x) = {y e L0(R)I there exists tk + such that x(t+tk) + y(t)

(4.1)

weak in L (R)).

We show that

(4.2) every y c P(x) is a constant.

Take c > 0 and define A by
c

F 1 IWI 4 C
(4.3) A (w)= 0 IwI > 2c

1 + c- Ie - Iwl, c 4 IwI 4 2c

There exists (t) such that
c

(4.4) 6c EL(R) c () =Ac(W)

Define, for n = 1,2,*** , and t > 0,

t
(4.5) f (t) =e nf(t),

n

thus

(4.6) f L (R+

n

Let xn satisfy

(4.7) x'(t) + (a * x )(t) = fn(t) , X(0) xn n n

then

(4.8) Xn(t) = xora(t) + (ra * fn)(t), t ) 0

and

+(4.9) x + x , as n + 0 , uniformly on compact sets of Rn

From (1.15), (1.16), (1.18) follows (much as in the proof of Lemma 1) that

-9-
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(4.10) r (t), C L (R)a dt

and so

(4.11) lrn r (t) - 0

Define xn =X f - f -0 for t < 0 . By (4.6), (4.10) we may take

Fourier transforms in (4.8) and obtain

(4.12) n (W) . x 0r a M + [iw + a(w)] f n(W) W * 0

AA -1 2suhta
As 6 (w)[iw + a(w)] C L (R) we have that there exists b1  uhta

Cc

(413 11 iW + a(w)

Suppose f or the moment that there exists b2(t) satisfying

1 AA -1
(4.14) b 2 L (R) , b 2(w) - 1 - (w)J [iw + a(w)]

Then

(4.15) x n(t) - x 0r (t) + f b 1(t-s)f n(s)ds + f b 2(t-s)f n(s)ds
0 0

As b1 + b2 =r - 0 for t < 0 we have b1 (t) = -b2 (t), t < 0 *But

(4.16) 1 fob (tsf(s)dsl 4 lb2  INI V t,n
2 L (R) L (R)

and so

(4.17) sup I f' b(t-s)f (s)dsl - K<QO
t,n t

Also

(4.18) lrn fcb 2(t-s)f n(s)ds b 2 b(t-s)f(s)ds
n~ 0 2 n0

uniformly for t C R *Define gn(t), g(t), t C R ,by

-10-



4.19 g n(t) =fo b I(t-s) f n(s)ds, g(t) =x(t) - x 0 r at)W f* b 2(t-s)f(s)ds.
0 0

Then

(4.20) g EL2(R) , g CL(R)

and so 9n~ respresent tempered distributions.

We claim that

(4.21) lint (g n- g) W 0 weak in S'
n-,

From (4.9), (4.15), (4.18), (4.19)

(4.22) 1rn (gnCt) - g(t)) -0 uniformly on compact sets of R,
n-

and as, by (4.17)

(4.23)

jgn(t)J I ft+ f *{b1 (t-s)fn( s)dsl 4 22~ MI K R f R
0 tL() LR

lg(" (K, t <0,

we conclude that (4.21) holds. But then

(4.24) lint (g n- g) =0 weak in S*

By (4.3), (4.4), (4.13), (4.19)

(4.25) supp gn c C-2c,2c].

From (4.24), (4.25) follows

(4.26) supp g c [-2c, 2c]

For g C L (R) we denote the spectrum of g (equivalently the support

of the distribution Fourier transform) by 0(g). The spectrum of a set A is

defined as G(A) U 0(P) For any y C L (R) we have oar(y)) a oy)
tP EA

and therefore, by (4.26),



(4.27) O(r(g)) c O(g) c [-2c, 2c].

But from (4.11) and the second part of (4.19) follows, as b £ L (R) and
2

f + 0 when t +

r(g) = r(x)

and so a(r(g)) = (r(x)) . Hence a(r(x)) c [-2c, 2c] , But c was

arbitrary and therefore we conclude that o(r(x)) = 0 which implies (4.2).

We return to the proof of (4.14). By (1.15), (1.18), (4.3), (4.4) we

have that [1 - 6 (w)] [iw + a(w)] is locally the transform of an L

function. Thus we only need to check the behavior of b at infinity. But
2

if one rewrites a as

a(-1 a)-2 )w-2

a(w) = a(0)[iw] - a'(0)w - (da' , * * 0

and uses (1.17) it follows after some calculations that

d A - L1

T ([im + a(w)] - ) L ((-a, -2c] U [2c, "))

and so (4.14) is true. The assertion (4.2) is hence valid.

From [8, Theorem 3.1] follows that the proof of Theorem 2 is complete

provided we show that if f has compact support then

x r a(t) + (r * f)(t) E L C(R +

This however is a consequence of (4.11).
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